Let’s give the boys some true China flu hope

Search

EV Whore
Joined
Apr 18, 2006
Messages
19,916
Tokens
That was a presentation for the simple minded of how masks work. Do you have any genuinely intellectual remarks about it?

A woven mask protecting you from a .1 micron virus is not the same as denim protecting you from pee.
Therefore it is not a FACTUAL illustration.
Any other brain busters?
 

EV Whore
Joined
Apr 18, 2006
Messages
19,916
Tokens
Why? And yet here you are on the same forum posting that to me. And you call what you are doing here "a life"? Define "a life".

For every 100 posts you make saying the same fucking thing about Covid, I make one post telling you you're a moron.
Apples and oranges.
Kinda like masks/viral load vs denim/piss.
Next?
 
Joined
Feb 20, 2002
Messages
24,349
Tokens
A woven mask protecting you from a .1 micron virus is not the same as denim protecting you from pee.
Therefore it is not a FACTUAL illustration.
Any other brain busters?

Nobody said it was factual or that they are "the same". Fact. But they are similar. Fact. It illustrates the same way that masks protect people & you've provided no evidence to the contrary. Fact. OTOH i've posted tons of evidence showing that they are similar because of the scientific evidence i posted showing that mask use is significantly effective in reducing C-19 infections. Fact.
 

EV Whore
Joined
Apr 18, 2006
Messages
19,916
Tokens
Nobody said it was factual or that they are "the same". Fact. But they are similar. Fact. It illustrates the same way that masks protect people & you've provided no evidence to the contrary. Fact. OTOH i've posted tons of evidence showing that they are similar because of the scientific evidence i posted showing that mask use is significantly effective in reducing C-19 infections. Fact.

OK you're right. The pee analogy has shown me the light. I previously refused to wear a mask, but due to this compelling evidence now not only will I wear one but I will attempt to shame others into following suit.
 
Joined
Feb 20, 2002
Messages
24,349
Tokens
Again showing your ignorance and how bereft of scientific proven facts you really are on this subject.
Do yourself a favor and go educate yourself... You are a buffoon to be perfectly honest!

Every statement you posted is 100% SCIENTIFICALLY FACTUALLY WRONG..........

Fat, drunk and stupid is no way to go through life son

Fat? LOL. More like slim.

Drunk? Nah, i've had about 10 drinks in the past several years.

Stupid? I'll leave that to Love Omnipotent to judge.
 
Joined
Feb 20, 2002
Messages
24,349
Tokens
Not one scientifically factual study has proven or shown masks stop the spread of a virus or save lives

Not one, you really need to educate yourself

I have talked with friends who work in the hospitals or do research and all have said masks really do not accomplish anything outside of a medical setting
except to give a false sense of security to the people wearing them.

These are doctors, nurses, researchers, etc...
One of them being an infectious disease doctor, another being a pulmonologist
I would think they would know what they are talking about over you, who has proven you do not know what you are talking about

They say the biggest thing is to social distance and limit being in small enclosed areas for long.

That's all hearsay. Not admissible as scientific evidence. OTOH this refers to actual scientific studies:

And for a more recently dated source, full of scientific evidence for mask usage, see the quoted material below:


Besides it being obviously common sense, there's tons of evidence that mask wearing reduces infections and deaths by C-19. For example:




"Face Masks Against COVID-19: An Evidence Review




Jeremy Howarda,c,1 , Austin Huangb , Zhiyuan Lik , Zeynep Tufekcim, Zdimal Vladimire , Helene-Mari van der Westhuizenf,g , Arne von Delfto,g , Amy Pricen , Lex Fridmand , Lei-Han Tangi,j , Viola Tangl , Gregory L. Watsonh , Christina E. Baxs , Reshama Shaikhq , Frederik Questierr , Danny Hernandezp , Larry F. Chun , Christina M. Ramirezh , and Anne W. Rimoint




a fast.ai, 101 Howard St, San Francisco, CA 94105, US; bWarren Alpert School of Medicine, Brown University, 222 Richmond St, Providence, RI 02903; cData Institute, University of San Francisco, 101 Howard St, San Francisco, CA 94105, US; dDepartment of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139; e Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, CZ-165 02 Praha 6, Czech Republic; fDepartment of Primary Health Care Sciences, Woodstock Road, University of Oxford, OX2 6GG, United Kingdom; gTB Proof, Cape Town, South Africa; hDepartment of Biostatistics, UCLA Fielding School of Public Health, 650 Charles E Young Drive, Los Angeles, CA 90095; iDepartment of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; jComplex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing 100193, China; kCenter for Quantitative Biology, Peking University, Haidian, Beijing 100871, China; lDepartment of Information Systems, Business Statistics and Operations Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; mUniversity of North Carolina at Chapel Hill; nSchool of Medicine Anesthesia Informatics and Media (AIM) Lab, Stanford University, 300 Pasteur Drive, Grant S268C, Stanford, CA 94305; oSchool of Public Health and Family Medicine, University of Cape Town, Anzio Road, Observatory, 7925, South Africa; pOpenAI, 3180 18th St, San Francisco, CA 94110; qData Umbrella, 345 West 145th St, New York, NY 10031; rVrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; sUniversity of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104; tDepartment of Epidemiology, UCLA Fielding School of Public Health, 650 Charles E Young Drive, Los Angeles, CA 90095




This manuscript was compiled on April 10, 2020...




The science around the use of masks by the general public to impede COVID-19 transmission is advancing rapidly...




The preponderance of evidence indicates that mask wearing reduces the transmissibility per contact by reducing transmission of infected droplets in both
laboratory and clinical contexts...




"3. Filtering Capability of Masks




...Multiple studies show the filtration effects of cloth masks relative to surgical masks. Particle sizes for speech are on the order of 1 µm (20) while typical definitions of droplet size are 5 µm-10 µm (5). Generally available household materials had between a 49% and 86% filtration rate for 0.02 µm exhaled particles whereas surgical masks filtered 89% of those particles (21). In a laboratory setting, household materials had 3% to 60% filtration rate for particles in the relevant size range, finding them comparable to some surgical masks (22). In another laboratory setup, a tea cloth mask was found to filter 60% ofparticles between 0.02 µm to 1 µm, where surgical masks filtered 75% (23). Dato et al (2006) (24), note that "quality commercial masks are not always accessible." They designed and tested a mask made from heavyweight T-shirts, finding that it "offered substantial protection from the challenge aerosol and showed good fit with minimal leakage".Although cloth and surgical masks are primarily targeted towards droplet particles, some evidence suggests they may have a partial effect in reducing viral aerosol shedding (25).




When considering the relevance of these studies of ingress, it’s important to note that they are likely to substantially underestimate effectiveness of masks for
source control. When someone is breathing, speaking, or coughing, only a tiny amount of what is coming out of their mouths is already in aerosol form. Nearly all of what is being emitted is droplets. Many of these droplets will then evaporate and turn into aerosolized particles that are 3 to 5-fold smaller. The point of wearing a mask as source control is largely to stop this process from occurring, since big droplets dehydrate to smaller aerosol particles that can float for longer in air (26).




Anfinrud et al (6) used laser light-scattering to sensitively detect droplet emission while speaking. Their analysis showed that virtually no droplets were "expelled" with a homemade mask consisting of a washcloth attached with two rubber bands around the head, while significant levels were expelled without a mask. The authors stated that "wearing any kind of cloth mouth cover in public by every person, as well as strict adherence to distancing and handwashing, could significantly decrease the transmission rate and thereby contain the pandemic until a vaccine becomes available."




An important focus of analysis for public mask wearing is droplet source control. This refers to the effectiveness of blocking droplets from an infectious person, particularly during speech, when droplets are expelled at a lower pressure and are not small enough to squeeze through the weave of a cotton mask. Many recommended cloth mask designs also include a layer of paper towel or coffee filter, which could increase filter effectiveness for PPE, but does not appear to be necessary for blocking droplet emission (6, 27, 28).




In summary, there is laboratory-based evidence that household masks have some filtration capacity in the relevant droplet size range, as well some efficacy in
blocking droplets and particles from the wearer (26). That is, these masks help people keep their droplets to themselves.




4. Mask Efficacy Studies




Although no randomized controlled trials (RCT) on the use of masks as source control for SARS-CoV-2 has been published, a number of studies have attempted to indirectly estimate the efficacy of masks. Overall, an evidence review (29) finds "moderate certainty evidence shows that the use of handwashing plus masks probably reduces the spread of respiratory viruses."




The most relevant paper (30), with important implications for public mask wearing during the COVID-19 outbreak, is one that compares the efficacy of surgical masks for source control for seasonal coronavirus, influenza, and rhinovirus. With ten participants, the masks were effective at blocking coronavirus droplets of all sizes for every subject. However, masks were far less effective at blocking rhinovirus droplets of any size, or of blocking small influenza droplets. The results suggest that masks may have a significant role in source control for the current coronavirus outbreak. The study did not use COVID-19 patients, and it is not yet known whether seasonal coronavirus behaves the same as SARS-CoV-2; however, they are of the same genus, so similar behavior is likely.




Another relevant (but under-powered, with n=4) study (31) found that a cotton mask blocked 96% (reported as 1.5 log units or about a 36-fold decrease) of viral load on average, at eight inches away from a cough from a patient infected with COVID-19. If this is replicated in larger studies it would be an important result, because it has been shown (32) that "every 10-fold increase in viral load results in 26% more patient deaths" from "acute infections caused by highly pathogenic viruses".




A comparison of homemade and surgical masks for bacterial and viral aerosols (21) observed that "the median-fit factor of the homemade masks was one-half that of the surgical masks. Both masks significantly reduced the number of microorganisms expelled by volunteers, although the surgical mask was 3 times more effective in blocking transmission than the homemade mask." Research focused on aerosol exposure has found all types of masks are at least somewhat effective at protecting the wearer. Van der Sande et al (33) found that "all types of masks reduced aerosol exposure, relatively stable over time, unaffected by duration of wear or type of activity", and concluded that "any type of general mask use is likely to decrease viral exposure and infection risk on a population level, despite imperfect fit and imperfect adherence". Overall however, analysis of particle filtration is likely to underestimate the effectiveness of masks, since the fraction of particles that are emitted as aerosol (vs. droplet) is quite small (26). Analysis of seasonal coronavirus compared to rhinovirus (30) suggests that filtration of COVID-19 may be much more effective, especially for source control.




The importance of using masks for health care workers has been observed (34) in three Chinese hospitals where, in each hospital, medical staff wearing masks (mainly in quarantine areas) had no COVID-19 infections, despite being around COVID-19 patients far more often, whilst other medical staff had 10 or more infections in each of the three hospitals.




Masks seem to be effective for source control in the controlled setting of an airplane. One case report (35) describes a man who flew from China to Toronto and then tested positive for COVID-19. He was wearing a mask during the flight. The 25 people closest to him on plane/flight attendants were tested and all were negative. Nobody has been reported from that flight as getting COVID-19. Another case study involving a masked influenza patient on an airplane (36) found that
"wearing a face mask was associated with a decreased risk for influenza acquisition during this long-duration flight".




Guideline development for health worker personal protective equipment have focused on whether surgical masks or N95 respirators should be recommended. Most of the research in this area focuses on influenza. At this point, it is not known to what extent findings from influenza studies apply to COVID-19 filtration. Wilkes et al (37) found that "filtration performance of pleated hydrophobic membrane filters was demonstrated to be markedly greater than that of electrostatic filters." However, even substantial differences in materials and construction do not seem to impact the transmission of droplet-borne viruses in practice, such as a metaanalysis of N95 respirators compared to surgical masks (38) that found "the use of N95 respirators compared with surgical masks is not associated with a lower risk of laboratoryconfirmed influenza." Johnson et al (39) showed that "surgical and N95 masks were equally effective in preventing the spread of PCR-detectable influenza". Radonovich et al (40) found in an outpatient setting that "use of N95 respirators, compared with medical masks... resulted in no significant difference in the rates of laboratory-confirmed influenza."




One of the most frequently mentioned papers evaluating the benefits and harms of cloth masks have been by MacIntyre et al (41). Findings have been
misinterpreted, and therefore justify detailed discussion here. The authors "caution against the use of cloth masks" for healthcare professionals compared
to the use of surgical masks and regular procedures, based on an analysis of transmission in hospitals in Hanoi. We emphasize the setting of the study - health workers using masks to protect themselves against infection. The study compared a "surgical mask" group which received 2 new masks per day, to a "cloth mask" group that received 5 masks for the entire 4week period and were required to wear the masks all day, to a "control group" which used masks in compliance with existing hospital protocols, which the authors describe as a "very high level of mask use". It is important to note that the authors did not have a "no mask" control group because it was deemed "unethical to ask participants to not wear a mask." The study does not inform policy pertaining to public mask wearing as compared to the absence of masks in a community setting, since there is not a "no mask" group. The results of the study show that the group with a regular supply of new surgical masks each day had significantly lower infection of rhinovirus than the group that wore a limited supply of cloth masks. This paper lends support to the use of clean, surgical masks by medical staff in hospital settings to avoid rhinovirus infection by the wearer, and is consistent with other studies that show cloth masks provide poor filtration for rhinovirus (30). Its implementation does not inform the effect of using cloth masks versus not using masks in a community setting for source control of SARS-CoV-2, which is of the same genus as seasonal coronavirus, which has been found to be effectively filtered by cloth masks in a source control setting (30).




A. Studies of Impact on Community Transmission.




When evaluating the available evidence for the impact of masks on community transmission, it is critical to clarify the setting of the research study (health care facility or community), the respiratory illness being evaluated and what reference standard was used (no mask or surgical mask). There are no RCTs that have been done to evaluate the impact of masks on community transmission during a coronavirus pandemic. While there is some evidence from influenza outbreaks, the current global pandemic poses a unique challenge. A review (42) of 67 studies including randomized controlled trials and observational studies found that simple and lowcost interventions would be useful for reducing transmission of epidemic respiratory viruses. The review recommended that "the following effective interventions should be implemented, preferably in a combined fashion, to reduce transmission of viral respiratory disease: 1. frequent handwashing with or without adjunct antiseptics; 2. barrier measures such as gloves, gowns, and masks with filtration apparatus; and 3. suspicion diagnosis with the isolation of likely cases". However, it cautioned that routine longterm implementation of some measures assessed might be difficult without the threat of an epidemic."




http://files.fast.ai/papers/masks_lit_review.pdf
 
Joined
Feb 20, 2002
Messages
24,349
Tokens
OK you're right. The pee analogy has shown me the light. I previously refused to wear a mask, but due to this compelling evidence now not only will I wear one but I will attempt to shame others into following suit.

I never said the pee illustration was "compelling evidence". If you're interested in that see my previous post in this thread. I've posted it several times & no one has refuted it. Though several people lightly dismissed & or mocked it. Which speaks volumes.
 

New member
Joined
May 24, 2018
Messages
1,749
Tokens
You need to educate yourself on the parameters of and how this virus is transmitted.

Every time you speak you show how ignorant you are

Yep. Very little evidence that passing encounters are spreading this virus. It's PROLONGED interactions with people who are sick that cause infections. I could walk by 20 people without masks who are all infected in a grocery store and probably won't get it. If I take a 4 hour road trip with someone who has it in the same car, then I'll get it.

This retard can't reason.
 

Member
Joined
Nov 10, 2007
Messages
2,772
Tokens
We therefore strongly support the calls of public health agencies for all people to wear masks when circumstances compel them to be within 6 ft of others for sustained periods."

You're busted alright. It say that wearing a mask offers little if any protection if you are more than 6 feet apart. So thats the mandate from all the states for all public buildings. No exceptions. So you are wrong. Everywhere a person goes the mask is useless according to the very article you are posting. It also says when circumstances compel them to be within 6 feet of anyone for sustained periods. Well you are supposed to be 6 feet apart and certainly not close for sustained time periods. There is no place in the entire country you are supposed to do such things.


Do you ever comprehend what you are reading? azzkick(&^
 
Joined
Feb 20, 2002
Messages
24,349
Tokens
Yep. Very little evidence that passing encounters are spreading this virus.


Who ever said otherwise.


It's PROLONGED interactions with people who are sick that cause infections. I could walk by 20 people without masks who are all infected in a grocery store and probably won't get it. If I take a 4 hour road trip with someone who has it in the same car, then I'll get it.

You don't know that you'ld get it in a 4 hour car trip with an infected person.

This retard can't reason.

You've provided no evidence of this.

Your response indicates emotional investment in the subject, which often clouds people's reason & ability to be objective.
 
Joined
Feb 20, 2002
Messages
24,349
Tokens
You're busted alright.

Where?


It say that wearing a mask offers little if any protection if you are more than 6 feet apart.

So?

So thats the mandate from all the states for all public buildings. No exceptions. So you are wrong.

Re what?

Everywhere a person goes the mask is useless according to the very article you are posting.

Please provide a quote from the article supporting your claim or retract it.

It also says when circumstances compel them to be within 6 feet of anyone for sustained periods. Well you are supposed to be 6 feet apart and certainly not close for sustained time periods. There is no place in the entire country you are supposed to do such things.

So do you think they are just talking about an imaginary make-believe world then?

Do you ever comprehend what you are reading?

Obviously.
 

Member
Joined
Nov 10, 2007
Messages
2,772
Tokens
As usual, you are wrong. That's an undocumented, out of context, quote from this article:

https://www.nejm.org/doi/full/10.1056/NEJMp2006372

And the authors of that article, who are pro mask, explain the meaning of that quote here:

"We understand that some people are citing our Perspective article (published on April 1 at NEJM.org)1 as support for discrediting widespread masking. In truth, the intent of our article was to push for more masking, not less. It is apparent that many people with SARS-CoV-2 infection are asymptomatic or presymptomatic yet highly contagious and that these people account for a substantial fraction of all transmissions.2,3 Universal masking helps to prevent such people from spreading virus-laden secretions, whether they recognize that they are infected or not.4"

"We did state in the article that “wearing a mask outside health care facilities offers little, if any, protection from infection,” but as the rest of the paragraph makes clear, we intended this statement to apply to passing encounters in public spaces, not sustained interactions within closed environments. A growing body of research shows that the risk of SARS-CoV-2 transmission is strongly correlated with the duration and intensity of contact: the risk of transmission among household members can be as high as 40%, whereas the risk of transmission from less intense and less sustained encounters is below 5%.5-7 This finding is also borne out by recent research associating mask wearing with less transmission of SARS-CoV-2, particularly in closed settings.8 We therefore strongly support the calls of public health agencies for all people to wear masks when circumstances compel them to be within 6 ft of others for sustained periods."

https://www.nejm.org/doi/full/10.1056/NEJMc2020836

Busted.

I guess I have to spell out everything for you. Other smart people like SR understand what I am saying. Lets try it again using kindergarten terms.

1 - SR quoted from the article “wearing a mask outside health care facilities offers little, if any, protection from infection”.
2 - You claim SR is busted because the article does endorse masks.

So far so good?

3 - But the article stresses that masks are only effective if you are within 6 feet for a sustained period of time.
We therefore strongly support the calls of public health agencies for all people to wear masks when circumstances compel them to be within 6 ft of others for sustained periods."
4 - Well why don't you check the mandates for states that are enforcing corona hoax rules? They clearly state stay 6 feet apart in all public buildings and certainly never get closer for a sustained period.
5 - So what good is the mask? You are never to be within 6 feet of someone. You're never supposed to be within 6 feet of someone for a sustained period of time.

Finally and as always...azzkick(&^
 

Forum statistics

Threads
1,116,445
Messages
13,533,430
Members
100,368
Latest member
marcomo
The RX is the sports betting industry's leading information portal for bonuses, picks, and sportsbook reviews. Find the best deals offered by a sportsbook in your state and browse our free picks section.FacebookTwitterInstagramContact Usforum@therx.com